69 research outputs found

    Which attacks lead to hazards? Combining safety and security analysis for cyber-physical systems

    Get PDF
    Cyber-Physical Systems (CPS) are exposed to a plethora of attacks and their attack surface is only increasing. However, whilst many attack paths are possible, only some can threaten the system's safety and potentially lead to loss of life. Identifying them is of essence. We propose a methodology and develop a tool-chain to systematically analyse and enumerate the attacks leading to safety violations. This is achieved by lazily combining threat modelling and safety analysis with formal verification and with attack graph analysis. We also identify the minimum sets of privileges that must be protected to preserve safety. We demonstrate the effectiveness of our methodology to discover threat scenarios by applying it to a Communication Based Train Control System. Our design choices emphasise compatibility with existing safety and security frameworks, whilst remaining agnostic to specific tools or attack graphs representations

    Using 3D shadows to detect object hiding attacks on autonomous vehicle perception

    Get PDF
    Autonomous Vehicles (AVs) are mostly reliant on LiDAR sensors which enable spatial perception of their surroundings and help make driving decisions. Recent works demonstrated attacks that aim to hide objects from AV perception, which can result in severe consequences. 3D shadows, are regions void of measurements in 3D point clouds which arise from occlusions of objects in a scene. 3D shadows were proposed as a physical invariant valuable for detecting spoofed or fake objects. In this work, we leverage 3D shadows to locate obstacles that are hidden from object detectors. We achieve this by searching for void regions and locating the obstacles that cause these shadows. Our proposed methodology can be used to detect an object that has been hidden by an adversary as these objects, while hidden from 3D object detectors, still induce shadow artifacts in 3D point clouds, which we use for obstacle detection. We show that using 3D shadows for obstacle detection can achieve high accuracy in matching shadows to their object and provide precise prediction of an obstacle’s distance from the ego-vehicle

    A goal-based approach to policy refinement

    Get PDF
    As the interest in using policy-based approaches for systems management grows, it is becoming increasingly important to develop methods for performing analysis and refinement of policy specifications. Although this is an area that researchers have devoted some attention to, none of the proposed solutions address the issue of deriving implementable policies from high-level goals. A key part of the solution to this problem is having the ability to identify the operations, available on the underlying system, which can achieve a given goal. This paper presents an approach by which a formal representation of a system, based on the Event Calculus, can be used in conjunction with abductive reasoning techniques to derive the sequence of operations that will allow a given system to achieve a desired goal. Additionally it outlines how this technique might be used for providing tool support and partial automation for policy refinement. Building on previous work on using formal techniques for policy analysis, the approach presented here applies a transformation of both policy and system behaviour specifications into a formal notation that is based on Event Calculus. Finally, it shows how the overall process could be used in conjunction with UML modelling and illustrates this by means of an example. 1

    Vesta: A Secure and Autonomic System for Pervasive Healthcare

    No full text
    Accepted versio

    A Lightweight Policy System for Body Sensor Networks

    No full text
    Body sensor networks (BSNs) for healthcare have more stringent security and context adaptation requirements than required in large-scale sensor networks for environment monitoring. Policy-based management enables flexible adaptive behavior by supporting dynamic loading, enabling and disabling of policies without shutting down nodes. This overcomes many of the limitations of sensor operating systems, such as TinyOS, which do not support dynamic modification of code. Alternative schemes for adaptation, such as network programming, have a high communication cost and suffer from operational interruption. In addition, a policy-driven approach enables finegrained access control through specifying authorization policies. This paper presents the design, implementation and evaluation of an efficient policy system called Finger which enables policy interpretation and enforcement on distributed sensors to support sensor level adaptation and fine-grained access control. It features support for dynamic management of policies, minimization of resources usage, high responsiveness and node autonomy. The policy system is integrated as a TinyOS component, exposing simple, well-defined interfaces which can easily be used by application developers. The system performance in terms of processing latency and resource usage is evaluated. © 2009 IEEE.Published versio

    A hybrid threat model for smart systems

    Get PDF
    Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately, identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combines the cyber, physical, and human aspects. Our model represents the system's components relations and security properties by taking into consideration these three aspects. Together with the threat model we also propose a threat analysis method that allows understanding the security state of the system's components. The threat model and the threat analysis have been implemented into an automatic tool, called TAMELESS, that automatically analyzes threats to the system, verifies its security properties, and generates a graphical representation, useful for security architects to identify the proper prevention/mitigation solutions. We show and prove the use of our threat model and analysis with three cases studies from different sectors

    Organizational cloud security and control: a proactive approach

    Get PDF
    Purpose The purpose of this paper is to unfold the perceptions around additional security in cloud environments by highlighting the importance of controlling mechanisms as an approach to the ethical use of the systems. The study focuses on the effects of the controlling mechanisms in maintaining an overall secure position for the cloud and the mediating role of the ethical behavior in this relationship. Design/methodology/approach A case study was conducted, examining the adoption of managed cloud security services as a means of control, as well as a large-scale survey with the views of IT decision makers about the effects of such adoption to the overall cloud security. Findings The findings indicate that there is indeed a positive relationship between the adoption of controlling mechanisms and the maintenance of overall cloud security, which increases when the users follow an ethical behavior in the use of the cloud. A framework based on the findings is built suggesting a research agenda for the future and a conceptualization of the field. Research limitations/implications One of the major limitations of the study is the fact that the data collection was based on the perceptions of IT decision makers from a cross-section of industries; however the proposed framework should also be examined in industry-specific context. Although the firm size was indicated as a high influencing factor, it was not considered for this study, as the data collection targeted a range of organizations from various sizes. Originality/value This study extends the research of IS security behavior based on the notion that individuals (clients and providers of cloud infrastructure) are protecting something separate from themselves, in a cloud-based environment, sharing responsibility and trust with their peers. The organization in this context is focusing on managed security solutions as a proactive measurement to preserve cloud security in cloud environments
    • …
    corecore